Effect of seasonality treatment on the forecasting performance of tourism demand models
نویسندگان
چکیده
This study provides a comprehensive comparison of the performance of the commonly used econometric and time-series models in forecasting seasonal tourism demand. The empirical study is carried out based on the demand for outbound leisure tourism by UK residents to seven destination countries: Australia, Canada, France, Greece, Italy, Spain and the USA. In the modelling exercise, the seasonality of the data is treated using the deterministic seasonal dummies, seasonal unit root test techniques and the unobservable component method. The empirical results suggest that no single forecasting technique is superior to the others in all situations. As far as overall forecast accuracy is concerned, the Johansen maximum likelihood error correction model outperforms the other models. The time-series models also show superior performance in dealing with seasonality. However, the time-varying parameter model performs relatively poorly in forecasting seasonal tourism demand. This empirical evidence suggests that the methods of seasonality treatment affect the forecasting performance of the models and that the pre-test for seasonal unit roots is necessary and can improve forecast accuracy.
منابع مشابه
Seasonality in Tourism and Forecasting Foreign Tourist Arrivals in India
In the present age of globalization, technology-revolution and sustainable development, the presence of seasonality in tourist arrivals is considered as a key policy issue that affects the global tourism industry by creating instability in the demand and revenues. The seasonal component in a time-series distorts the prediction attempts for policy-making. In this context, it is quintessential to...
متن کاملTourism Demand Modelling and Forecasting—A Review of Recent Research
This paper reviews the published studies on tourism demand modelling and forecasting since 2000. One of the key findings of this review is that the methods used in analysing and forecasting the demand for tourism have been more diverse than those identified by other review articles. In addition to the most popular time series and econometric models, a number of new techniques have emerged in th...
متن کاملForecasting Tourism Demand to Catalonia: Neural Networks vs. Time Series Models
The increasing interest aroused by more advanced forecasting techniques, together with the requirement for more accurate forecasts of tourism demand at the destination level due to the constant growth of world tourism, has lead us to evaluate the forecasting performance of neural modelling relative to that of time series methods at a regional level. Seasonality and volatility are important feat...
متن کاملمدل سازی ترکیبی پیش بینی تقاضای گردشگری پزشکی داخلی شهر تهران
Introduction: One of the most important events in the tourism industry of each country is the demand for a product or destination and its true prediction of tourism. It should be noted that there are distances and deviations between actual values and predictions. The use of modern scientific and forecasting methods will make the results far more than an objective estimate and closer to the trut...
متن کاملComparative Analysis of Artificial Neural Networks and Neuro-Fuzzy Models for Multicriteria Demand Forecasting
An organization has to make the right decisions in time depending on demand information to enhance the commercial competitive advantage in a constantly fluctuating business environment. Therefore, estimating the demand quantity for the next period most likely appears to be crucial. The objective of the paper is to propose a new forecasting mechanism which is modeled by artificial intelligence a...
متن کامل